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Abstract

The project is focused on the purpose of providing a methodology that is simpler to apply and the purpose for
the whole project can be understood in reasons which are essential to produce the grammatical error correction
or GEC model in the paper, which will be called ‘gt5’ that aims to improve the accuracy of grammar detection
by reducing the steps of fine-tuning thus allowing the ease in production of algorithm and its application. The
model is expected to reduce the steps of fine-tuning due to its nature of being an optimised version of the base
model and utilising the appropriate datasets. The clang-8 dataset [5] is a cleaner version of the noisy lang-8
dataset, and therefore, the focus relies greatly on generating the dataset for the application of the model, followed
by the experiment on the CoNLL-2014 dataset [12] for its popularity among model’s benchmark comparisons.
Next, the model gt5, whose base model is a T5 (pre-trained) model, will be produced so that the results can
be compared to the performances of relevant GEC systems made in the past. The benchmark is expected on
language English for this paper. The base-model (t5-base) consists of consists of 220M parameters. Future
experiments can be done on rest of the languages given the data is sufficient for each language. Through the
mentioned stages of processing the algorithm, the aim converges at successfully formulating an easy but efficient
method to build a GEC model that can further contribute to the field as a capable baseline model.
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Nomenclature

This section serves as a reference list for the key terms, abbreviations, metrics, and models used in this NLP
project. The relevant sections of the document provide detailed explanations for the mentioned concepts.

Mathematical annotations

5e, 2e Learning rate represented scientifically as 0.00005, 0.00002

η Learning rate.

λ Regularization parameter.

∇L Gradient of the loss function.

B Batch size

i Index.

L′ Derivate of loss function.

wt Weight at time ‘t’

xi Input data at index ‘i’

yi Output data at index ‘i’

Code and functions

AdamW An optimizer that implements the Adam algorithm with weight decay.

Auto tokenizer Tool to automatically load the appropriate tokenizer for a given pre-trained model without
specifying the exact tokenizer class.

DataCollatorWithPadding A data collator that pads batches of data to the same length.

gec pipeline The pipeline used for GEC tasks.

Gecmodel.py Main file for running the GEC model.

Gecmodel errEval.py File for evaluating the results of GEC model.

introduce errors Function to implement data augmentation.

pred texts Variable to store generated sentences by the GEC.

preprocess function Function to preprocess data before training.

run prog Named virtual environment on HPC for training tasks.

subprocess A module to spawn new processes, connect to their input, output or error pipes, and obtain their
return codes.

trainer.train() Method to begin the training loop in Hugging Face’s Trainer class.

virtualenv Tool to create isolated Python environments.

Definitions
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FN True negative.

FP False positive.

GEC A subfield of NLP that aims to correct grammatical errors in text.

HPC High-performance computing

MLM Stands for Masked Language Model, used in training models like BERT where the model learns to
predict the words that are masked in the input.

NLP Natural Language Processing, the field of artificial intelligence focused on training machines to under-
stand human language.

TN True negative.

TP True positive.

C4 Large-scale dataset used for pretraining language models, called Collosal Cleaned Crawled Corpus.

cLang − 8 Cleaned version of lang-8 dataset.

CoNLL− 2014 Benchmark dataset for grammatical error correction.

lang − 8 Dataset for learner language used for language learning.

mC4 Multilingual C4, a dataset derived from Common Crawl for multiple languages.

Evaluation metrics

BLEU It is a metric for evaluating the quality of text which is machine-translated from one language to
another, stands for Bilingual Evaluation Understudy.

F0.5, F − beta, F1 Metrics combining precision and recall, with different emphasis.

n− gram A contiguous sequence of n items from a given sample of text or speech.

Precision Ratio of correctly predicted positive observations to the total predicted positives.

Recall Ratio of correctly predicted positive observations to all observations in actual class.

training − loss A measure of how well the model is learning during training.

Libraries/Frameworks

datasets A library by Hugging Face for accessing and sharing datasets.

HuggingFace Community and company that is engaged in creating tools for NLP, including transformers.

Models and techniques

BART Model for text-generation and other tasks, stands for Bidirectional and Auto-Regressive Transformers.

BERT Transformer-based model for various NLP tasks, stands for Bidirectional Encoder Representations from
Transformers.

GEcTOR Transformer based model specifically for GEC.

RoBERTa A robustly optimized BERT pre-training approach.

SMT Statistical machine translation.
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SOTA State-Of-The-Art meaning best performing model in the field.

T5 Text-to-text transformer model.

Neural network components

batch size Number of training examples utilized in one iteration.

Dropout− rate A regularization technique to prevent overfitting.

Epochs One complete pass through the training dataset.

GRU Gated Recurrent Unit, another type of RNN.

LSTM Long Short-Term Memory, a type of RNN.

max length Maximum sequence length for processing inputs.

RNN Recurrent Neural Network

steps Training iterations.

subwords Units of text smaller than words used in tokenization.

truncation Shortening sequences to a maximum length.

weight− decay A regularization technique to reduce the complexity of a model.

Tools and formats

CSV Format of file for tabular data, stands for Comma Seperated Variables.

m2 Format of file for evaluation of results produced by GEC.
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1 Introduction

1.1 Aims and objectives

In this paper, the step-by-step methodology for building a GEC is explored that can contribute to the respective
field of NLP and following this basic principle to any further development can contribute substantially to any
new coming-to-age model in the same field with substantially improved efficiency from the start itself. Through
the optimal hyper-parameters in the algorithm and applying data augmentation, the goal is to improve the
accuracy of grammatical error detection in the English language and thus produce the trained grammar error
correction model which will generate grammatically correct versions of the input sentences.

To further the development, next is building the GEC or grammar error correction model that is called gt5
on the base model of T5-transformer. The current model is only focused on 1 language, with more data more
languages can be dealt with in future experiments. The performance of the optimised model or gt5 will be later
compared to past performances and essentially among both the datasets that the experiment aims to provide an
analysis on, along with an analysis on the techniques applied in the algorithm that resulted in the production
of the desired system. The dataset aimed for the project to provide an analysis of the implemented model is
CoNLL-2014 and a shorter eligible version of cLang-8 datasets for training. The later has fewer experiments
available in the research field currently, being the newest and potentially efficient.

Figure 1: Fine-tuning data [8]

Therefore, the gt5 model which is to be developed in this project aims to provide convenient results when
the comparison is performed to put itself as the better system as a new checkpoint for any future GEC experi-
mentation. The final analysis will provide a clear gap between the aims and conclusion and specify the degree
to which the model has performed well also along the process, discussion will be made regarding how well the
applied techniques have either resulted in improvement or those which did not yield desired results but could
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help in chasing the right path for the model development.

1.2 Background and literature survey

In the field of natural language processing, the quest for flawless and efficient communication has become
increasingly necessary and thus the intricate correction of grammar, punctuation, and style often comes about
to be challenging and therefore there are immediate requirements for such to proficient writers and speakers. In
the face of this, the computational field has strived to put forward methods that can provide solutions to such
challenges which has resulted in the innovative algorithms capable of automatically detecting and correcting
grammatical errors in text.

The grammatical error correction (GEC) is a state-of-the-art technology built upon the ideology of combining
the prowess of artificial intelligence and linguistic algorithms for the sole purpose of enhancing written commu-
nication. The need for reliable and intuitive grammar correction tools has become increasingly pronounced and
this is all in correspondence with the expansion of digital landscape.

The idea of generating synthetic data to improve the model’s performance has been prevalent in the field
as well [43, 29]. The seq-2-seq tasks that can be spotted when researching methodologies for the purpose
showcase that the method of leveraging self-supervised pre-training and thereby increasing model size can yield
substantial results [47, 57, 20].

Figure 2: Enc-dec [42]
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2 Literature review

2.1 GEC models

The past developments towards the models that are built on base models of t5 and mt5 have contributed
significantly in tokenising the language sentences and thus performing the necessary grammatical error detection.
The mt5 model was trained on mC4 corpus which is the subset of Common Crawl covering over 101 languages
and composed of about 50 billion documents. But the span-prediction objective of the model does not allow it
to perform GEC without much needed further fine-tuning. Another constraint is that the respective model is
trained only on paragraphs and not sentences [57].

The most recent work is being done in the direction of enriching the entire model through pre-training on the
data-rich tasks. Therefore, the models acquire some general-purpose abilities and knowledge that can be passed
to downstream tasks. The rapid progress and diversity of techniques applied in this burgeoning field make it
quite difficult to compare different algorithms, conclude the effects of new contributions, and thereby understand
the space of existing methods for transfer learning. “Motivated by a need for more rigorous understanding, we
leverage a unified approach to transfer learning that allows us to systematically study different approaches and
push the current limits of the field.”[47]

Even though such approaches and many similar [57, 51, 48] are being developed rapidly, applying such
techniques to the GEC has not yet reached a concrete level of developmental stage.

Though the models implemented have contributed significantly on improving the accuracy, there comes
completely new set of challenges that can be neutralised with careful approach. Whenever there is expansion
in terms of application of GEC to wide range of languages, some challenges like language specific tuning for
synthetic datasets and inability of synthetic data to capture complete data distribution of targeted evaluation
sets result in the development of multi-lingual GEC at the cost of multi-stage fine-tuning process. Further
challenges that are inevitable such as the careful consideration of learning rates and deciding the epochs make
the further development of models on the pre-existing ones for bettering the overall error detection quite
tedious and difficult. Therefore, GECs that can be attain the capability of reducing the steps to fine-tuning
will contribute heavily to evolution of GEC models.

2.2 cLang-8 dataset

The cLang-8 dataset is much cleaner version of lang-8 which has approximately 1.16M annotated sentences
available for training. But there are some erroneous and incomplete corrections in the lang-8 that can be
corrected and those corrections can help in building better GEC which are much more efficient and easy to
optimise for usage. Therefore, with the right kind of methods, clang-8 dataset can be built from the raw
lang-8 which will help in achieving the aim. The common experiments that are possible are supervised and
unsupervised approach. For this project specifically, supervised approach will be utilised in hope of achieving
required up-to-the-mark results. Thus, new target sentences will be generated along with the appropriate file
to generate corpora for combining the new target generated file and lang-8 for corrected English corpora [10].

2.3 CoNLL-2014 dataset

The CoNLL-2014 Shared Task on Grammatical Error Correction (GEC) introduced a benchmark dataset that
has significantly propelled research in this field. The dataset comprises a collection of English sentences with
corresponding error annotations, providing a valuable resource for developing and evaluating GEC systems.

The dataset is characterized by its diversity in error types, sentence complexity and language proficiency
levels. Key challenges associated with the dataset include [27] : -

1. Error complexity: The dataset encompasses a wide range of error types, from simple spelling mistakes to
complex grammatical errors, requiring robust models capable of handling diverse error patterns.

2. Data sparsity: Certain error types may be underrepresented, leading to challenges in model training and
evaluation.
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3. Annotation inconsistencies: Variations in annotation guidelines and human annotator judgments can
introduce noise into the dataset.

Though, the respective dataset has played pivotal role in much advancing the GEC research [45]. Some
effective approaches in the field considering the dataset includes: -

1. Neural Sequence-to-Sequence Models: These models have achieved state-of-the-art performance on the
CoNLL-2014 dataset. Approaches such as Encoder-Decoder architectures with attention mechanisms have
been extensively explored, demonstrating superior capabilities in capturing complex sentence structures
and generating accurate corrections.

2. Pretrained Language Models: Leveraging large-scale pretrained language models, such as BERT and
RoBERTa, has further improved GEC performance. These models provide rich contextual representations,
enabling a better understanding of the sentence and facilitating error detection and correction.

3. Data Augmentation and Transfer Learning: Techniques like backtranslation, synonym replacement, and
noise injection have been employed to augment the training data and improve model generalization.
Additionally, transfer learning from related tasks, such as machine translation or text summarization, has
shown promising results.

2.4 More attepts on GEC improvements

The transformer architecture has prevailed the disciplinary development of GEC models and some have excelled
but usually in English language and thus lots of developments are in place for lot of other languages [53]. The
SOTA model for English GEcTOR [46] is capable of applying multiple transformer-based encoders like BERT
[24], ROBERTa [41] and XLNet [40]. This is essentially to develop a sequence tagger that can be capable of
applying pre-defined corrections to the given input text.

Development in the multilingual approach has provided for possibilities to come up with single model that
can work on multiple languages. Though this development is accelerated since possibilities have displayed
themselves, it’s not as advanced as the GECs for English language itself. But the architectures that are
produced in the process have proven themselves to catalyse the error detection on English as well, improving
the accuracy at a higher rate than before.

BERT is trained on raw corpora of large size in order to learn words and sentences which have further
facilitated lot of development in various tasks [53]. MLMs have been utilized for not just classification and
sequence labelling tasks but its utilization was for language generation as well by combining it with ‘EncDec’
models [38]. Common methods among them are infusion and initialization. In the ‘init’ method, downstream
task model is to be initialized with the parameters of a pre-trained MLM which is then trained over a task-
specific training set only [38, 48]. The approach was faulted, meaning the high-degree of training that such
tasks require is not possible in the case of MLMs. Thus, sequence-to-sequence language generation here is
rendered useless [65, 44]. Further, in the fusion method, the pre-trained representations of MLMs are utilized
as additional features for task-specific model training [65]. The flaw in the approach is that MLM is capable
of preserving the pre-training though it is unable to adapt to task-specific distribution of inputs, resulting in a
failed attempt to utilise the complete potential of MLM by the GEC model.
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Figure 3: Improvements in GEC architecture [16]

The improvement in GEC systems can be made by addressing the gap between grammatically correct
raw corpora and GEC corpora. There often exists a mismatch problem between contextual knowledge from
pre-trained models and target bilingual machine translation [55].

2.5 Alternate basemodel: BERT

BERT stands for ‘Bidirectional encoder representations from transformers’. It was launched by Google in 2018
and since then has served as a powerful language model. Some challenges in the field of NLP or ‘natural
language processing’ include high-priority ones like shortage of data, and research is constantly being carried
out to solve the problem and expand the field to make it more easily available to a lot more sources. One of
the techniques that help in bridging the gap for the shortage of data is by training large language models on
large amounts of unannotated text on the web, also known as pre-training. This process has been proven to be
efficient in improving the accuracy rather than training the given datasets from scratch by fine-tuning them on
individual NLP tasks.

The ‘masked language model’ by BERT can be a substantial help in improving the procedure of pre-training
in terms of quality by the process followed in building such models. Usually, it includes making some of the
tokens from the input, and then achieving its objective of predicting the original vocabulary id of the masked
word based only on its context. The MLM’s objective can help in effectively pre-training the deep bidirectional
transformer [24].

Since BERT strives to address the limitations of NLP by leveraging transformers because the transformer
architecture has helped in significantly understanding the entire sentences simultaneously unlike the preceding
models that were good at processing individual words in the sentences respectively. This holistic approach
captures the relevant relationships between the words at different positions [1].
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Figure 4: BERT architecture [14]

2.6 Text-to-Text transfer transformer

The T5 transformer was introduced by ‘Google AI’ in 2019. Being a prominent architecture in the field of natural
language processing, it is only natural to explore its applications, training methods, and specific impacts on the
NLP projects made available publicly. The model can be found at [7].

2.6.1 Prominent characteristics

1. Encoder-Decoder Architecture: The T5 follows the standard encoder-decoder structure which is quite
commonly used in sequence-to-sequence models. The encoder processes the input text, capturing its
meaning and relationships between words. The decoder then utilizes the encoded information to generate
the output text.

2. Transformer Blocks: The encoder and decoder consist of stacked Transformer blocks which is its standard
feature. These blocks employ an attention mechanism, allowing the model to focus on relevant parts of
the input sequence when generating the output.

3. Unified Text-to-Text Format: A core feature of T5 is supposed to be its ability to frame various NLP
tasks as text-to-text problems. This is achieved by prepending a specific task prefix to the input text and
instructing the model on the desired transformation like ‘summarize’ for summarization.

2.6.2 Available training methods

• Pre-training: The T5 models are trained on huge amounts of data of texts and code and the dataset is
called C4 corpus. This pre-training plays a pivotal role in allowing the model to learn and understand
the essence of a language in a broad sense and then it can be used by the model to apply it to various
forthcoming downstream tasks.

• Fine-tuning: This is quite essential for reducing the training time when training is initialised so it is only
a smart option to fine-tune the model rather than start training from scratch. Due to the pre-trained
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knowledge, the T5 models are equipped with the ability to precisely fine-tuned on NLP tasks by adjusting
the model weights on a task-specific dataset.

The broad range of applications that are possible due to the model are text-summarization, machine translation,
question answering, text classification and text generation. The impacts on the field of NLP are quite prominent
and models can be compared with others like BART, and BERT for performance and efficiency depending on
the suitability for tasks [4]. The versatility, efficiency and performance improvements are quite evident because
of which the ability to handle diverse NLP tasks through text-to-text formulation has streamlined workflows
further reducing the need for specialized models for individual tasks. Pre-training on C4 corpus has helped in
bettering the development cycles [49].

Figure 5: Transformer model [13]

There are more versions accurate for more complex data processing and for the requirements of more diverse
category of tasks. The other models are T5-small, T5-large, T5-3B, T5-11B and UL2 or ‘universal language
model 2’ [7].

1. T5 Small: This is the smallest version with approximately 60 million parameters. It’s suitable where
computational power is limited.
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2. T5 Large: This mid-sized version with 770 million parameters. It offers a good balance between perfor-
mance and efficiency and can handle more complex problems compared to the base model.

3. T5 3B: This version has 3 billion parameters. It can demonstrate improved performance on many NLP
tasks as compared to the base and large models. However, it requires more computational resources for
training and inference.

4. T5 11B: This is the largest version with a staggering 11 billion parameters. It achieves state-of-the-art
performance on various benchmarks, but its immense size necessitates significant computational resources.

5. UL2 (Universal Language model 2): Though not strictly a T5 variant, UL2 shares a similar Transformer-
based architecture. It’s pre-trained on various denoising objectives, showcasing strong performance on
tasks like filling in missing words and summarization.

2.7 Grammatical error correction pipelines

GEC pipelines have a crucial role to play in automating the process of identifying and correcting the grammatical
errors in the input text to the system.

2.7.1 The core functionalities of the GEC pipelines

1. Error identification: The pipelines make the errors that are identified through the system in the input
texts possible. These errors can include spelling mistakes, incorrect verb tenses, subject-verb agreement
issues, prepositional phase errors, and sentence structure problems.

2. After recognizing the incorrections in the sentences, the corrections are made by either suggesting or
generating the grammatically correct alternatives for the erroneous segments. Though this leverages the
pre-trained models or specialised GEC models fine-tuned on error-annotated datasets.

3. The output is finally generated highlighting the problem with the input sentences and thus presenting the
grammatically correct version.

2.7.2 Important components

1. Pre-processing Module: This module prepares the input text for the error identification model. It involves
the necessary tasks like tokenization which is meant to break down the individual words into units or
tokens, and normalization (handling punctuation and casing).

2. Error Identification Model: This core component of the pipeline employs NLP models, such as rule-based
systems, statistical machine translation models, or deep learning models trained on GEC datasets, to
analyse the input text and detect grammatical errors [52].

3. Error Correction Model: This module is usually based on pre-trained language models and/or specialized
GEC models for the purpose of generating candidate corrections for the identified errors. It aims to
produce grammatically correct and language-fluent solutions given the context surrounding the text [36].

4. Postprocessing Module: This final stage performs any necessary cleaning or formatting on the generated
output text.

The benefits surrounding the component are improved communication quality, efficiency, scalability and
adaptability. The automating process of the GEC reduces the time and effort compared to manual proofread-
ing. There are though certain future directions to it as well, exploring is worthwhile [61]. Some of them are
improved model performances, domain-specific adaptation, explainability and adaptability. More research is
employed in the direction of making the GEC pipelines more transparent and certain domains of experiments
like building the GEC pipelines specifically for writing styles can further enhance its performance in specialized
contexts [31]. The ‘Huggingface’ provides the pipeline function called ‘text-to-text generation’ which has played
pivotal role in recording predictions from the GEC and has been very helpful to the project [12].
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2.8 Tokenizers

Tokenization plays a crucial role in GEC pipelines by preparing the input text for the error identification and
correction models. The pre-processing steps include breaking the texts into smaller individual units so that they
can be smoothly processed by the NLP models. It can be used for creation of POS or part-of-speech tags or
morphological information. It can be used quite efficiently in strategies to locate the errors. Common approaches
for tokenization is splitting the text into individual words based on whitespace boundaries. But there is small
challenge as it cannot hyphenate words effectively. There is an approach which is computationally expensive
which is breaking down texts into individual characters, which according to this approach captures finer-grained
information about the morphology. Therefore, the better approach that balances the computational efficiency
and morphology is splitting words into smaller units called subwords which means prefixes, suffixes or in some
case whole words. Sentence-piece tokenization is a versatile approach that can combine word-level, character-
level, and subword tokenization depending on the context [35]. This allows for flexibility in handling different
language characteristics. Choosing the right kind of approach is imperative due to several reasons which can be
the language, each of which has its own morphological complexity and can benefit from subword or character-
level tokenization or more reasons like GEC model architecture and availability of computational resources
[31]. Effective tokenization improves the error-detection ability of the model by revealing inconsistencies and
highlighting potential error locations. Right strategy leads to efficient model performance [19].

2.9 Encoder-decoder architecture

The encoder is to process the variable-length input sequence and then compress it to the fixed-size representation
called as ‘context-vector’. For this specific purposes, recurrent neural networks or RNN like LSTMs (long short
term memory) or gated recurrent units (GRU) are used. On the other hand, the decoder utilises encoded
representation from encoder to generate new variable-length output sequence. The decoder typically predicts
one element of the output sequence at a time, relying on the previously generated elements and the encoded
context. This is how the input sentence is translated into an output sentence. The encoder-decoder architectures
are powerful and versatile tools for various sequence-to-sequence learning tasks. There are many forthcoming
advancements expected in the field of natural language processing due to experiments being carried out on
attention mechanisms, novel architectures, and broader applications [66, 58].

More complex structure of the same architecture involves building hierarchical encoder-decoders to handle
various complex input structures such as nested sentences or documents. Each level of the hierarchy focuses on
capturing information at different granularities.

The challenges remain in training complexity due to being computationally expensive especially in the
imperative cases of large datasets. Also, explaining the inner workings of the model remains a bit of a challenge,
specifically the attention weights and therefore trust in their outputs can be increased once sufficient research
measures are available to take in that direction [54, 50].

Figure 6: Encoder decoder architecture [2]

18



2.9.1 Applications

1. Machine Translation (MT): Encoder-decoder architectures are the foundation for most modern machine-
translation systems. The encoder processes the source language sentence, and the decoder generates the
target language translation.

2. Text Summarization: The encoder reads the input document, and the decoder condenses it into a shorter
summary that captures the key points.

3. Text Generation: This includes tasks like question answering, dialogue systems, and image captioning.
The encoder processes the input context (e.g., a question or an image), and the decoder generates the
corresponding textual response or caption.

2.9.2 Attention mechanism

Significant advancement in the encoder-decoder architectures is the introduction of attention mechanism [15].
The reason why this has led to much more development in terms of the performance of models is how the
‘Attention’ allows the decoder to focus on specific parts of encoded representation that is relevant to generating
the next element in the output sequence [23]. The architecture in “Attention is all you need” [53] relies
completely on the attention mechanisms and not on recurrent or convolutional layers. Transformers have
achieved state-of-the-art performance in many NLP tasks and offer advantages like parallelization for faster
training.

Figure 7: Example of Attention mechanism for English-Hindi language conversion [37]

2.10 More experiments with the lang-8 datasets

Lang-8 is the base dataset from which cLang-8 dataset was created. Therefore, certain experiments on the same
dataset can provide a perspective highlighting the direction in which GEC model development has been heading.
Some work has been done on a phrase-based statistical machine translation (SMT) approach for GEC. Using
the lang-8 dataset, the model achieved significant improvement in error-correction over baseline methods [64].
An approach involves employing a neural-machine translation techniques using sequence-to-sequence models.
After training on large portion of the lang-8 dataset, the best F0.5 score achieved was 39.90. The analysis was
centred around benefits of neural methods over traditional SMT approaches [59]. An experiment on achieving
a spectacular F0.5 score of 49.49 on a subset of lang-8 demonstrates the improved ability of the model to
generalize well across different types of grammatical errors present in the dataset. This neural network-based
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approach was focusing on using large scale datasets for training [22]. BERT model when trained on lang-8
dataset for a sufficient portion along with other datasets could result in F0.5 score of 45-50. There were some
specific intricate configurations according to subsets of data utilized [32]. Another approach involves data
augmentation by generating synthetic errors and then training the model on lang-8. The F0.5 score of 42.16
reveals the effective method of data augmentation on GEC models and how it can become capable of handling
real-world errors [29].

2.11 High-performance computing

The computational demands for the high-performance computing or HPC is quite high for GEC tasks and many
relevant NLP tasks. Those based on deep learning architectures like transformers constantly require processing
massive amounts of data. This can involve millions of sentences with annotated errors, placing significant
computational strain on standard CPUs. The trend in GEC is towards larger and more complex models for
improved performance. However, training these models necessitates even greater computational power due
to the vast number of parameters involved. The more crucial feature of HPCs comes into play when they
are utilised for employing optimization techniques such as the gradient descent which proves to be extremely
effective for training, accelerating the convergence process and thereafter improving the model performance.

2.11.1 Benefits of the HPC for GEC

1. Faster Training Times: HPC clusters with GPUs or TPUs can significantly reduce training times for GEC
models compared to using standard CPUs. This allows for faster experimentation, model development
cycles, and adaptation to new datasets.

2. Handling Large Datasets: HPC resources enable GEC researchers to leverage larger and more diverse
datasets for training, potentially leading to models with better generalization capabilities and improved
performance on unseen data.

3. Exploration of Complex Models: The computational power of HPC facilitates further exploration of
intricate GEC models with advanced architectures, potentially leading to more impressive advancements
in the field [25].

There are available alternatives, though for this project specifically the HPC is provided by the university
called ‘CREATE’ [26] and is free for student usage but also proves to be computationally effective for the level
of model built in the project. Though for more diverse purposes the considerable alternatives are pay-as-you-
go cloud-based services provided by Amazon, Google and many other platforms. Another advantage includes
leveraging distributed training frameworks across multiple computing nodes within an HPC cluster can further
accelerate the training process for large GEC models [19, 34].

2.12 Errant as metric

Errant is a metric that penalizes primarily the number of errors in a machine translation output [18]. An
error can be anything from a missing word to a completely nonsensical phrase. Particularly the Errant score
is better as low score and is calculated by dividing the total number of errors by the total number of words.
Though, F0.5 score is a notable metric and also the focus of this project. It is the harmonic mean of precision
and recall. Here, precision is the portion of correctly translated words and recall is the portion of words in
reference translation which are correctly translated in machine translation output. The F0.5 score specifically
puts more emphasis on precision by weighting it by 0.52. A higher F0.5 score indicates a better translation.
It is a variant of the F-beta measure which finds application in various machine learning tasks, particularly
machine translation. It balances precision and recall with a stronger emphasis on precision (beta=0.5). This
can be beneficial when mistranslations are more detrimental than missing a few words in the translation, such
as in medical documents or legal contracts [9].

Its difference over the similar metrics like F1 score include accurate translations, thus reducing the penalty
on missing information. This is extremely crucial in domains where factual accuracy is paramount. F0.5 is
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much easier to interpret than more complex metrics like BLEU score, which considers factors like n-gram overlap
and brevity penalty [60]. The clear focus on minimizing false positives makes it a straightforward measure for
non-experts.

Though it is suitable for the project, for more diverse range of projects on similar topics its limitations can be
a problem which is primarily overemphasis on precision. In certain scenarios it might overlook the importance
of capturing all relevant information.
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3 Objectives, design and specifications

3.1 Objective

3.1.1 Purpose of the project

The objective of the project is to experiment with a capable base-model with new datasets that have come into
the field and then provide more clarity on the experimentations how accurate can be the utilisation of such
new dataset to produce state-of-the-art grammatical error correction models. This is expected by equipping
a pre-trained base model with additional sufficient fine-tuning and data-manipulation techniques to produce
another model. Referring the new model as gt5, it is aimed at producing results with the new cLang-8 dataset
and CoNLL-2014 with promising traits of helping in producing the model that can deliver results with less steps
in fine-tuning and correcting the errors in a sentence. Therefore, the experiments are carried out to produce
an array of results that can give an idea of the best approaches available to manoeuvre through the available
pathways, if also required for more such projects in the future.

3.1.2 Scope of the project

The project’s scope is to correct the errors of types punctuation errors, verb tense errors, subject-verb agreement
errors, spelling mistakes and morphological errors. The datasets adopted for the project are utilized for the
purpose of achieving this particular objective. Though the datasets don’t explicitly categorize the types of errors
rather all sentences in total are mixed with the kind of errors potentially present in them, some observations
could be made about the nature of sentences present in them. There can be a higher concentration of errors
reflecting challenges faced by learners, such as subject-verb agreement for complex tenses, misuse of articles
(”a” vs. ”the”), or confusion with phrasal verbs. These kinds of errors introduced due to manual intervention
can make the dataset quite diverse. But it is intended that subtly the sentences contain the biases of the writers
or the model used in the past for creating the datasets or amending them.

3.1.3 Expected outcomes

The outcomes of the project is dependent on the experiments planned by the model on the datasets. Since
covering huge analysis in limited time is critical and also the hardware for carrying out the experimentation,
initially the basic run for limited epochs (3 or 4) with basic hyper-parameters will be recorded for each dataset.
Then to improve the performance, more techniques will be attempted like specifically data augmentation and
hyper-parameter tuning and probably increasing the epochs simultaneously. Also experimenting with different
proportion of train and test of dataset though not much is expected from changing the proportion. In all
the cases, the proportion split will be constant (70%-30%) to make valid comparison in the F0.5 scores of the
outputs which are from the Errant module. The expected F0.5 scores are in the range (0.3-0.5) which should
be considered good benchmarks for this project. The span-based correction scores are the main ones; therefore,
token-based correction scores will be compared later to provide a deeper analysis. If the scores are achieved in
due time available, tweaking the intricate parameters can help in potentially achieving slightly higher scores.
Therefore, after the experiments, best-case corrected sentences will be procured as the results to analyse the
accuracy of grammar correction on the language by the model.

3.2 Design

3.2.1 Model architecture

The architecture aimed at experimenting and utilised finally is based on T5-model which text-to-text transfer
transformer. It includes the encoder-decoder structure where the encoder is responsible for processing the
input text and producing sequence of continuous representations. The decoder on the other hand, takes the
continuous representations to generate output text. More key components are as follows: -

1. Tokenization is done by using the ‘AutoTokenizer’ associated with the t5-base model to convert the input
text into tokens and then token IDs so that model can process them.
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2. The key role of the attention mechanism is using scaled dot-product attention. In the encoder, attention
allows each position to focus on all positions in the previous layer. In the decoder, masked self-attention
ensures that the prediction for a particular token depends only on the known outputs at earlier positions.

3. Each layer in encoder and decoder contains the feed-forward network which is applied to each position
independently.

The pretrained encoder-decoder T5 model is worthwhile choice for the project requirements for a variety of
reasons. Text-correction is all about generating grammatically correct versions of the corrupted input sentences
and at such sequence-to-sequence tasks, conditional generation models excel at. The model is trained on huge
amounts of correct and incorrect sentences, the patterns and rules that exist between the texts and sentences
are quickly adaptable by the model.

Figure 8: Functioning of T5 [11]

For the project, the chosen model is ‘t5-base’ which has 220 million parameters and given the limitations of
available memory space, is the optimal choice for the project compared to larger more complex models such as
T5-3b and T5-11b with 3 billion and 11 billion parameters respectively.

3.2.2 Applicable hyper-parameters

The learning rate is an essential part of the architecture. The learning rate is a scalar value (η) that controls
the magnitude of updates to the model’s weights (w) during the optimization process. It determines how much
the model adjusts its weights in response to the error (loss function) gradient.

Update rule: wt+1 = wt - η ∇ L(wt)
where,

• wt represents the weight vector at the current iteration (t).

• ∇L(wt) denotes the gradient of the loss function (L) with respect to the weights at the current iteration.

• wt+1 signifies the updated weight vector for the next iteration.

The higher learning rate η will lead to larger weight updates but smaller learning rate though being small,
leads to more stable convergence process though being slower than former. But larger learning rate can help
in faster convergence though it has high chances of increasing the risk of overshooting minimum loss function
and oscillating around it. Therefore, for the required datasets in the project, it is chosen appropriately to
be ‘5e-5’ which is optimal but more feasible for the required purpose which means 5 times 10 raised to the
power of -5 and relevant alternatives can be introduced by replacing ‘5e’ with ‘2e’. The weigh decay (λ) is a
hyper-parameter that introduces an L2 penalty term to the loss function. It acts as a regularizer to prevent
overfitting by penalizing large weight values.

Loss function with weigh decay: L’(wt) = L(wt) +
λ
2 ||wt||2

where,
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• ||wt||2 represents the squared L2 norm of the weight vector, essentially the sum of squares of all weight
values.

The weigh decay term penalizes model for having larger weights, compelling them to stay close to zero.
Depending on the parameter being high or low, it results in high or low penalty on large weights. Higher weigh
decay reduces overfitting but potentially increases the bias of the model. Smaller one on the other hand, ensures
the model can adapt to complex patterns simultaneously increasing the chances of overfitting.

The gradient is calculated with respect to a subset of the training data (the batch), if applied instead of
the entire dataset. Batch size (B) is the number of training examples used to compute the gradient of the loss
function in a single update step. It affects the efficiency of the optimization process and the generalization
performance of the model.

Gradient descent update (with batch size ‘B’): wt+1 = wt - η · 1
B ∇ L(wt, {xi, yi} | i ∈ B)

Dropout rate is the regularization technique in neural networks to prevent overfitting. During training, a
random subset of neurons in a layer is temporarily disabled (dropped out) with a probability ‘p’. Therefore,
the network is forced to learn features that are robust to the absence of any particular neuron and prevents
neurons from co-adapting excessively to specific patterns in the training data.

3.2.3 Applied data augmentation

Data augmentation is the technique of introducing noise in the data to force the training model to better
adapt to the patterns between the data. This supposedly increases the chances of performing better when faced
with unseen datasets, thus increasing its generalizing ability. More advantages of data augmentation include the
expansion of the effective training data size, allowing the model to learn from a broader distribution of examples.
However, this technique is very subjective to the type and size of the dataset applied. Thus, there are equal
chances of the model performing well or not given the particular kind of dataset. The focus of this project is
introduce random errors to either insert, swap, replace or delete words randomly among the sentences. Before
the pre-processing function, this technique is applied to both the training and validation set of the dataset so
that the model can potentially improve its detection capabilities among the existing patterns in the language.
This is carried out by the ‘introduce errors’ function of the algorithm.

1 # ------- Applying data -augmentation

2 # Function introduces random errors.

3 def introduce_errors(sentence):

4 words = sentence.split()

5 if len(words) < 2:

6 # Skips very short sentences

7 return sentence

8 error_type = random.choice ([’swap’, ’insert ’, ’delete ’, ’replace ’])

9

10 if error_type == ’swap’ and len(words) > 1:

11 # Introduces a swap error between random adjacent words

12 index = random.randint(0, len(words) - 2)

13 words[index], words[index + 1] = words[index + 1], words[index]

14 elif error_type == ’insert ’:

15 # Inserting a random word at a random position

16 random_word = random.choice(words)

17 index = random.randint(0, len(words))

18 words.insert(index , random_word)

19 elif error_type == ’delete ’ and len(words) > 1:

20 # Deleting a random word

21 index = random.randint(0, len(words) - 1)

22 words.pop(index)

23 elif error_type == ’replace ’:

24 # Replacing a random word with another random word

25 index = random.randint(0, len(words) - 1)

26 random_word = random.choice(words)

27 words[index] = random_word

28 return ’ ’.join(words)

Listing 1: Applied data augmentation technique to the input dataset
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3.2.4 Data pipeline

The data is loaded using ‘datasets’ module in the format of csv file for obtaining the performance by the
model. The data is split into train and validation sets before pre-processing. In the pre-processing step, each
set is passed into the function ‘preprocess function’ which captures the data from the dataset in columns 1 and
2 which represent incorrect and correct sentences respectively. Further the input and target sentences after
capturing them individually are tokenised and to ensure consistent input length for the model, padding and
truncation are used. If these parameters are not utilised, the input would be of inconsistent shape and the
model will crash every time before processing the inputs. Therefore, to avoid the inhomogeneous shape of the
input, pre-processing is applied to ensure smooth data processing.

3.2.5 Training procedure

The training procedure is consisting of very important steps which includes the data loading, model initialisation,
training setup and evaluation.

1. The ‘T5ForConditionalGeneration’ class is used for loading the T5 model, which is designed for various
text generation tasks. This model converts any text-based problem into a text-to-text format.

2. The ‘AutoTokenizer’ class is utilised for loading the tokenizer associated with the t5-base model. The
purpose of tokenizer is to pre-process the input and the target sentences by converting them into the
token ids for the model to easily comprehend.

3. When the dataset is loaded in CSV format, performance is initially obtained on cLang-8 and CoNLL-2014
without data augmentation, but later, data augmentation is introduced to obtain various results. The
data is augmented to introduce random errors. The split of the train-evaluation set is 70%- 30%.

4. The ‘preprocess function’ is the function defined to tokenize the inputs and targets, ensuring they are
padded and truncated to a maximum length of 512 tokens. This is imperative to not lose performance
due to inconsistent processing of sentence-length.

5. The ‘training args’ defines the needed parameters like learning rate, batch size, number of epochs, and
checkpointing. The learning rate is set to ‘5e-5’ suitable for the size of dataset used. The custom data
collator, ‘DataCollatorWithPadding’ is used to handle padding during batch processing. The optimizer
chosen for desirable performance is ‘AdamW’.

6. The ‘Trainer’ class is initialised with ‘trainer.train()’. All the inputs fed into it are model, training
arguments, datasets, tokenizer, data collator, and optimizer.

7. After the training completes, the model is utilised for text generation using the pipeline function from
the ‘Hugging Face’ library specifically using text2text-generation. Here, the predictions are saved for final
analysis or calculating the scores for the evaluation dataset. The final score is done in a neighbouring file
specifically for calculating F0.5 score.

8. The predictions when made on the HPC or ‘CREATE’ which is a high-power computing service provided
by the institution, for the dataset were first imported from the HPC and then evaluated on the evaluation
python script ‘Gecmodel errEval.py’ for specifically processing the files through the Errant module. The
file prepares the m2 format for hypothesis and reference text files before making a comparison and then
produces the final scores.

3.2.6 Evaluation metrics

ERRANT also stands for Evaluation for Robustness of Reference-less Automatic Natural Language Translation.
It is a toolkit designed for evaluating the quality of machine translation outputs, particularly when lacking
reference translations for comparison. However, it is used to also apply to other tasks like Grammatical Error
Correction (GEC) as an evaluation metric. Grammatical correctness would not necessarily be enough to analyse
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how well the model as a whole works or how well is it capable of evolving. Thus to ensure more precise analysis
is done such as testing the production of unnatural or awkward sentences and through that testing the fluency
and naturalness of the language by analysing word choice and sentence structure, cohesion and coherence within
the text along with readability and overall clarity. Errant is quite equipped to also correct the over correctness
of the GEC system in case the output sentences totally lose their meaning. The F0.5 score is the primary metric
for the project, including the span-based correction score, which is the correctness over the whole sentence level,
and token-based, which is the correction on individual word-level or token-level. It falls under the concept of
F-beta scores and combines the concepts of precision and recall. Precision measures the proportion of corrected
sentences that are actually grammatically correct and Recall measures the proportion of grammatically incorrect
sentences that the GEC corrects. Advantages of Errant scores include avoidance of false positives and it is quite
suitable for imbalanced datasets as well. Unlike BLEU score which might reward overly similar outputs even if
not grammatically correct, F0.5 score emphasizes identifying actual errors and correcting them precisely.

3.3 Specification

3.3.1 Dataset

Dataset is the centre of the GEC and careful planning is required to approach the processing of the data.
The strategies are essential to ensure considerable results are obtained in time. cLang-8 is a cleaned version
of the lang-8 corpora. Due to its origin from the English learners as English as a second language or ESL, it
encompasses the errors from broader category of the language speakers than just the native ones. The mistakes
are inclusive of grammar, syntax, vocabulary usage, and punctuation. Due to the advantageous nature of the
dataset, the models trained on them can be better at learning the patterns of correcting the errors and produce
promising performances. The dataset comes from real-world texts and has millions of sentences though for the
project, it has been shortened to 1,000 sentences closer to size of another dataset CoNLL-2014 to be finally
tested to evaluate the built GEC, the datasets are supposed to be almost equal in the error-distribution to
compare the model performance. Therefore, a proper comparison can be made among the tested datasets.
It also simplifies the training pipeline thus reducing the complexity in training the system. Another dataset
that is to be considered for comparing the model built will be on CoNLL-2014 given its popularity among the
benchmarks by past GEC models.

3.3.2 Hardware and software requirements

HPC or high-performance computing

The HPC utilised for the project is ‘CREATE’ by the University of King’s College London as discussed before
in Section [2]. Grammatical error correction is a complex challenge in the field of natural language processing.
Therefore, to analyse sufficiently large amount of data with feasible time duration and accurate management of
memory there is a need for a platform that is capable of extending such support. The reason why HPC clusters
provide the ideal environment for such high-end computing is because they combine numerous high-performance
computing nodes each of which are equipped with CPU, GPU or specialized accelerators. Through the action of
distributing the workload across these nodes, HPC enables parallel processing, significantly accelerating training
and evaluation times. For instance, training a complex GEC model on a single CPU could take days or even
weeks, whereas an HPC cluster could complete the task in a fraction of the time.

Python IDE

The environment of ‘PyCharm’ IDE [30] provides a comfort zone to produce the necessary codes that are
the ultimate goals of the project. Among many other possibilities is ‘PyCharm’ IDE, which provides an easy
infrastructure to search and download required dependent modules and libraries. It is easy to locate the files
on the machine and, for this project’s purpose specifically, can be easily transferred to HPC for further detailed
processing. The environment is equipped with terminals to update and run files and python version. Further, it
becomes easier to directly interact with the HPC and make immediate changes when necessary. A more feasible
option is the ‘Jupyter’ notebook, but if the task includes running complex systems as discussed, this should be
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more dependent on the user’s past experiences with the IDEs so that execution can be carried out in a desirable
time and that simplifies the project-building.

3.3.3 Performance benchmarks

Specifically, CoNLL-2014 is a popular dataset to compare benchmarks, so quite a lot of performances are
available to compare. Though cLang-8 is relatively new, there have been certain tests, and there are comparisons
that can be included in the analysis. Even though it is used in portions and combinations with other datasets,
the experiments give vivid analysis, and therefore, there is data of the transformer models, trained on cLang-8
or lang-8 (from which cLang-8 is derived) and CoNLL-2014 datasets, which will be in focus for the project’s
objective. The project’s results can be compared with the existing analysis to obtain an idea of how close are
the project’s scores to the other scores.

Model Precision Recall F0.5

GEC model [21] 0.6549 0.3221 0.4988

GEC model [28] 0.6677 0.3213 0.6128

GEC model [33] 0.724 0.441 0.65

GEC model [62] 0.739 0.461 0.6677

Table 1: The performances on CoNLL-2014 dataset

Model Precision Recall F0.5

GEC model [39] 0.4120 0.1640 0.3170

GEC model [56] 0.4472 0.2216 0.3716

GEC model [63] 0.7412 0.3630 0.6134

Table 2: The performances on cLang-8 dataset
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4 Methodology and implementation

The gt5 model is trained on clang8 dataset and before reaching the results delivered, it has been experimented
through prominent sections of the dataset. The purpose of the gt5 model is to reduce the fine-tuning steps and
attempt to create the new state-of-the-art GEC that can be easier to implement for future purposes. The base-
model is deliberately chosen to be ‘t5’ so that it can provide a good foundation as well as perform better due to
its incredible text-to-text framework, scalability and capacity. The understanding of the model is justified by
its impressive pre-training on huge amounts of data on C4 dataset or Colossal Clean Crawled Corpus. Later to
obtain clearer analysis of model’s performance among some past models trained on similar methodology, results
are recorded with CoNLL-2014 dataset as well. All the runs are aimed at achieving substantial results for the
model performance with the datasets mentioned.

4.1 Initial plan for the project

Essentially, the project schedule requires the following components to be effectively listed and followed. A
schedule is formulated on the basis of the identified components and therefore the target is set by the end
of July to attain full-fledged finished report with identified results. The remaining week before the deadline
which is 6th August, the focus will be on properly identifying the report and correcting any changes if any and
verifying proper functioning of the model and packaging of source codes.

The components are as follows: -

1. Data acquisition: Particularly lang-8, for the preparation of the English dataset and the CoNLL-2014
dataset.

2. Model evaluation: -

• Phase 1: Running and implementing base model or T5 with cLang-8.

• Phase 2: Optimising the base-model and building gt5 model.

• Phase 3: Obtaining more results with gt5 and cLang-8 dataset and CoNLL-2014.

• Phase 4: Drawing final comparison of base-model among other models.

3. Theory development: Reporting the status of aims achieved and updating the recorded results.

4. Software development: Final analysis of the project code and finalising report. Uploading the source
codes with appropriate citations in the appropriate repository.

Initially, the data was acquired, on which further processing and fine-tuning were planned. Following is the
Gantt chart to have a recollection of project components as a whole.
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4.2 Gantt chart

Figure 9: Gantt chart

4.3 Dataset preparation

The cLang-8 dataset is built on lang-8 dataset. It is the more cleaner version of the later. The LANG-8 dataset
covers 80 languages and has been corrected by language learners by correcting each other’s texts. Even though
the distribution of languages is very skewed it includes Japanese and English as the prevalent languages with
over a million ungrammatical-grammatical sentence pairs each, and only ten languages in total have more than
10,000 sentence pairs each. But the flip side to a huge amount of data collected is that, given the uncontrolled
nature of the data collection, there are many of the examples which contain quite unnecessary paraphrasing as
well as erroneous or incomplete corrections.

There are many GECs or grammatical error correction models that have utilised the dataset to produce
state-of-the-art GECs. Though if there is the opportunity of the dataset becoming better version of themselves,
there are higher chances of building GEC that can be tweaked a little depending on their architecture or
functioning to train themselves on the same improved datasets if present.

The clang-8 was created by the authors by the models that were trained utilizing certain strategies to ensure
the outputs can contain the updated and corrected sentences not only grammatically but also from the literature
perspective [6]. A supervised model is used to output the sentences that are devoid of erroneous input sentences
from the Lang-8 dataset. The advantageous aspects of such dataset production was that the word-error rate
between the source and target words were reduced dramatically. This is why it was released so new GECs can
be implemented using the respective dataset for easier production of the new state-of-the-art grammatical error
correction models.

The CoNLL-2014 dataset comprises of the errors produced and ESL writings. Due to the variety of data
collected, it has been experimented with for GEC and made a popular dataset to establish benchmarks against
models and thus is openly available.

To produce the datasets, the lang-8 is collected and processed to create the CSV format of cLang-8 dataset
and from the test set of CoNLL-2014, the dataset is procured in m2 format to be converted into CSV format
for further processing.

4.4 Environmental setup

For running the scripts, environment with greater CPU or GPU and storage is essential and since training time
for each sections of the experiments is huge, it cannot be run on local machine. For this project the HPC
considered is ‘CREATE’. The short scripts can be run on the local machine to see if the changes made in the
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training parameters or later when implementing the data augmentation are working correctly. If there are errors
and debugs, testing the code for 1 epoch and then correcting the mistakes on smaller datasets can be helpful
to ensure the new strategy works without bugs and then it can be transferred to HPC for running the larger
datasets. Therefore, it was very helpful to reduce the datasets and experiment on first few sentences to debug
the code to avoid bugs in the HPC when it failed after long hours of running.

To setup HPC, first there was the need for asking the supervisor to provide the access to the institution’s
services. Later, creating an ‘SSH’ key for authentication is needed. Once the authentication is complete, it is
possible to log-in to the HPC from the IDE terminal and directly transfer the files.

To run the files, first the python environment was setup which in this case was ‘virtualenv’ for python 3.8.
Then ‘jobs’ are created to process the files in batch format. After storing the necessary files, setting up the
virtual environment there is a need to install the necessary dependent libraries on the HPC terminal and then
batches can be executed to run scripts in the virtual environment so that the processing can initiate. The ‘jobs’
are modified to notify the author when jobs are submitted for running the program and when the program
stops running or fails before the completion time due to bugs.

4.5 Model implementation

4.5.1 Training parameters

The base model for the experiment is ‘t5-base’ model from the pre-trained models by Google. There were quite
some challenges faced before arriving at accurate checkpoints that were helpful in making the progression in
the right direction. The tokenizer used for the system is associated with the base-model chosen for the system
to ensure compatibility. The parameter-tuning for the model are as follows: -

1. Learning rate: ‘5e-5’

2. Number of training cycles processed per device (GPU or TPU): 4

3. Epochs: 3, 6 and 10

4. The dropout rate is set at 0.1 with the model to avoid overfitting when training the data.

5. Checkpoints: The recent 3 ones are to keep and the old ones are deleted. This is to ensure the disk space
is not exploited.

6. Weigh decay: 0.01. Thus penalty term introduced will help preventing overfitting.

7. At last it will load the best model for further phases of the algorithm.

8. Optimizer is set to AdamW to expect improvements in the results from model training.

4.5.2 Complete implementation of parameters in the model

The parameters utilised for the model are essential to find a balance between computational resources available
and model training time and expected performance output. They are set for the purpose of the project given
the available choices as follows: -

1. Padding of max-length to ensure all sequences are padded to same length and there is uniformity in the
data.

2. Truncation is set to ‘longest first’ ensuring the most relevant information is retained.

3. The maximum length of input and output sequences is set to 512. This is to make sure that no tokens
are missed but requires more computation compared to shorter values.

4. Evaluation strategy is set to ‘steps’ to track the checkpoints produced. This is chosen as better alternative
than ‘epoch’ to delete the previous checkpoint models and storing the latest 3, better performing ones.
Though requiring more computation is space-friendly and avoid crashing of program due to storage issues.
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5. Learning rate is set to ‘5e-5’ suitable for the size of dataset being used. It determines the step size at each
iteration while moving toward a minimum of the loss function.

6. Number of training samples per batch per device is kept at 4.

7. Number of epochs to be tested with variations between 3,6 and 10 to gather enough results for comparison.
The larger the number of epoch, more time it consumes to execute.

8. ‘weigh decay’ parameter set to 0.01 to prevent overfitting by adding penalty for larger weights.

9. Checkpoints for model are saved every 1000 steps.

10. Data collator, ‘DataCollatorWithPadding’ is used for this model to pad sequences to the same length in
a batch, ensuring they can be processed simultaneously.

11. Optimizer is set to ‘AdamW’ for better performance and generalization combining the benefits of ‘Adam’
optimizer and weight decay.

1 # Defining training arguments

2 training_args = TrainingArguments(

3 output_dir=’./ results_clang_10epc ’, # Store the results for epochs 3,6 and 10

respectively.

4 evaluation_strategy=’steps’,

5 learning_rate =5e-5,

6 per_device_train_batch_size =4,

7 per_device_eval_batch_size =4,

8 num_train_epochs =10, # Can experiment with epochs , diverse results expected with 3,6 and

10.

9 weight_decay =0.01,

10 save_steps =1000 , # Saving checkpoint every 1000 steps

11 save_total_limit =3, # Limit the total amount of checkpoints. Deletes the older

checkpoints.

12 logging_dir=’./ logs_clang8_tuned ’, # Directory for storing logs , can be renamed for

different epochs to store data.

13 logging_steps =1000 , # Log every 1000 steps

14 load_best_model_at_end=True , # Load the best model when finished training

15 )

Listing 2: Hyperparameters applied after tuning

4.5.3 Inference pipeline

The GEC pipeline formalises the production of the predictions from the model after it finished training and
is named ‘gec-pipeline’ in the project. This is for text-correction. From the inputs of the unseen validation
dataset which are from the ‘Column1’ in the respective dataset, predicted outputs are generated which are the
grammatically correct versions of the sentences. Following this, the references are extracted in a file to store
them for further analysis which is the ‘Column2’ or the corrected sentences from the validation set. Following
is the simple way of presenting the steps involved: -

1. Formatting: The pipeline prepares the text for the model by tokenizing it (breaking it down into smaller
units).

2. Model Prediction: The formatted text is fed into the trained T5 model, which generates the most probable
corrected text. The limit to generating output sequence is set at 1. The ‘max length’ for tokens is 512
to ensure even the largest sentences are allowed as inputs and properly processed to produce accurate
corrections.

3. Output Processing: The pipeline retrieves the generated text from the model and potentially performs
further processing before returning it.
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1 # ------- BUILDING THE GEC PIPE -LINE

2 gec_pipeline = pipeline(task=’text2text -generation ’, model=model , tokenizer=tokenizer)

3 # Save predictions and references

4 predictions = gec_pipeline ([ example[’Column1 ’] for example in eval_dataset], max_length =512,

num_return_sequences =1)

5 pred_texts = [prediction[’generated_text ’] for prediction in predictions]

6 references = [example[’Column2 ’] for example in eval_dataset]

7 # ------

Listing 3: GEC pipeline for the gt5 model

The pipeline setup includes initializing a text-to-text generation pipeline with the trained T5 model and its
tokenizer. The ‘pipeline’ is a high-level API from ‘Huggingface’ for easy use of pre-trained models. Specifically
the task is specified by ‘text2text-generation’. It is appropriate for models to take in input and generate the
corresponding output text. In order to extract predictions of generated texts or ‘pred texts’, the incorrect
sentences are passed through pipeline that has the limit of generated output tokens of 512. 1 output sequence is
generated per input sentence. The references are extracted after these steps which records the correct sentences
from the evaluation dataset.

4.5.4 Deployment

In summary, the overall system performs the following way as discussed in parts before: -

1. Loading the dataset in CSV format.

2. Pre-processing the data, an important step to tokenize the original and corrupted sentences both. Padding
and truncation are applied to ensure all the sequences have same length to ensure smoother processing
and minimise computational errors.

3. Loading the pre-trained T5 model for conditional generation from a checkpoint.

4. Initialise the Trainer object with model, tokenizer, arguments, dataset and data collator. Later the model
is trained on training dataset.

5. For the evaluation purposes, the text-to-text generation pipeline is used by the model which generates
the corrected sentences and then stores the records in files to be evaluated on later.

6. Saving the results and using Errant-toolkit to calculate F0.5 score on the saved text files.

Initially the experimentation was carried out on small section of dataset to look through flaws and advantages of
the code and understand the possible challenges that can arrive. Such holes in the system can be covered using
such approach and thus is more convenient on the local machine. But in order to process the larger dataset,
the high-performance computing played a huge role. Therefore, the allowance provided by the university was
sufficient to bridge the gap of need and thus processing on a larger scale was possible. The HPC or high-
performance computing requires student access provided by the supervisor. On the HPC, in order to produce
and store the results for further analysis, it was very important that the steps are carried out carefully planned.

1. 1. Therefore, the virtual environments were applied, primarily the ‘virtualenv’ initiates the environment
‘run prog’ to produce the processing environment for the transferred scripts that were needed to run and
also to store the necessary libraries and modules.

2. The jobs were created to process the scripts on nodes and output results.

3. The jobs were modified to notify the user when queueing for the process began and ended and whether
the processing was a success or had bugs. This was helpful to immediately make changes to the code
when the problem arose without any loss of unnecessary time.
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The processing power made the execution much more feasible by reducing the time-span in hours and processing
of 4 hours of script on local machine reduced to 2 hours on the HPC.

The model was supposed to provide the state-of-the-art performance given the architecture applied to it but
it has resulted in a decent baseline model. Though this was the best experiment that turned out for successful
production of the system, it provided possibilities for experimenting on cLang-8 dataset specifically which is
quite new to the field of natural language processing. To provide a better comparison, later the same model is
tested on CoNLL-2014 test dataset to provide F0.5 scores that can be used or relevant comparison.

4.6 Evaluation method

The evaluation for the project is not by traditional metrics like F1-score, accuracy but rather the outputs as
predicted texts which are generated by the GEC and reference texts that are the correct versions of input texts,
are used to calculate Errant F0.5 score. To process this, the needed text files including the incorrect text files
containing all the incorrect input sentences from the dataset, predictions from the GEC and the ‘references’ file
which contains the corrected sentences from the dataset are obtained by running the main file ‘Gecmodel.py’
which trains the model. The evaluation is done on the neighbouring script because it turned out to be an
easier method to obtain the necessary files and then evaluate and store the results in an organized manner.
Essentially, it is the same process just divided into 2 parts for convenience.

The next file to be used for evaluation is ‘Gecmodel errEval.py’ [A.13] which runs Errant for final evaluation
and saving results. This is done by first achieving the predictions, then using the files individually for incorrect
and correct sentences to generate the needed m2 format of files references, and predictions. The last stage
involves comparing the two m2 files to produce the final scores for analysis. The effective way to run the
analysis is to use the ‘subprocess’ module in the script to run the terminal commands, and all the files that are
processed are saved, including the m2 formats of references and predictions and the final score, which includes
precision, recall and F0.5 that are saved in a separate text file. After all the scores are attained through diverse
kinds of runs, analysis can be done on what fine-tuning steps or data augmentation techniques have proven to
be useful to achieve more accurate translations of the input sentences into the grammatically correct ones.

1 # Running the ERRANT commands

2 subprocess.run(

3 ["errant_parallel", "-orig", "Err_files_evals/clang8.incorrect", "-cor", "Err_files_evals

/predictions.txt", "-out",

4 "Err_files_evals/results.txt"],

5 capture_output=True , # Capture stdout and stderr

6 text=True # Return the output as a string

7 )

8 # subprocess.run([" errant_m2", "-silver", "Err_files_evals/references.txt", "-out", "

Err_files_evals/ref_m2.txt"], capture_output=True , text=True)

9 subprocess.run(

10 ["errant_parallel", "-orig", "Err_files_evals/references.txt", "-cor", "Err_files_evals/

predictions.txt", "-out",

11 "Err_files_evals/ref_m2.txt"],

12 capture_output=True , # Capture stdout and stderr

13 text=True # Return the output as a string

14 )

15 output = subprocess.run(["errant_compare", "-hyp", "Err_files_evals/results.txt", "-ref", "

Err_files_evals/ref_m2.txt"],

16 capture_output=True , # Capture stdout and stderr

17 text=True # Return the output as a string

18 )

Listing 4: Evaluating through ’subprocess’ function the m2 files for final scores

4.7 Challenges encountered during fine-tuning and implementing the model training

The dataset finally produced had the incorrect and corrected sentences for the model implementation. Therefore
the model trained on the based model t5 and clang-8 dataset had few shortcomings to be addressed before

33



arriving at the stage where the predictions from the pre-processed dataset can be extracted for finally evaluating
it.

1. Choosing the evaluation metric for the model, though it already utilises evaluation loss for the model,
deciding the metric was imperative. Therefore, getting to Errant-score was challenging initially.

2. More debugging involved solving the shape of the inputs problem. The inputs for processing were resulting
in inconsistent shapes and usually, the input data was resulting in object data-type or arrays with inhomo-
geneous shape but those problems were solved by making changes to the hyper-parameters, pre-processing
and later by properly extracting the outputs in the result files. For instance, printing intermediate results
like shapes of tensors helped in identifying issues during training.

3. Running the errant score was challenging initially because of limited understanding how to compute
the files. But the module itself was used to process the necessary files in m2 format for final phase of
processing.

4. The HPC also proved to be a little struggle before enabling proper execution of the python scripts. The
job scripts required proper specification of nodes, queueing notification to the author and specifying the
address to store the important outputs of model training. The print statements are ineffective in the
HPC therefore shorter debugging processes had to be carried out on local machine with smaller sections
of dataset to manage the computing power.
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5 Results, analysis and evaluation

The objective of the overall project was to attempt in establishing a state-of-the-art GEC that can provide
convincing results in reduced fine-tuning steps. Therefore, the experiments that have been performed begin
from the cLang-8 dataset and go on to CoNLL-2014 to give a vivid idea of the potential of the grammatical
error correction model. The system’s first version is very simple with newly implemented trainer classes with
appropriate parameters, and the GEC pipeline to extract predictions. But in order to properly build a system,
it requires the important components and therefore many versions with different combinations of epochs of the
GEC model give a better idea of which version is most potent and how well it can adapt to either of the chosen
datasets.

The Errant scores are recorded by comparing the ‘m2’ format of references and predictions, where references
are the correct versions of the input sentences used to produce the sentences in the predictions file.

Precision: TP
TP+FP

Recall: TP
TP+FN

F0.5: (1+0.52)·Precision·Recall
0.52·Precision)+Recall

5.1 Results

The results are obtained from specific cases that have had a considerable impact. The epochs to be considered
are 3, 6 and 10. When set for model evaluation, these epochs produced results that were helpful to the
overall project analysis. In other cases, when tweaking the hyper-parameters, the results were distorted, and
performance failure was more than predicted. This might be due to improper data augmenting techniques
applied to the system or implementing higher learning rates over the dataset’s medium size, which could not
produce tangible results. However, these errors could be corrected by running the scripts with the necessary
modifications.

Initially the model was tested on smaller versions of the dataset to debug and improve base performance
before moving on to final datasets. Following is the most prominent kind of result and is the nearest to almost
all the failed experiments. The results for CoNLL-2014 dataset were: -

• Precision: 0.1232

• Recall: 0.1165

• F0.5: 0.1218

This was specifically during the 10 epochs training because the lower epochs did not provide clear errors in the
scores. The problem in the results seem to be increased detection of false negatives of 1092 and therefore the
overall score has changed drastically. This has not happened yet to the performance of the model. However,
the cLang-8 dataset performed considerably well: -

• Precision: 0.7157

• Recall: 0.3364

• F0.5: 0.584

But this alone cannot justify the model performance on large datasets. Moreover, there has to be consistency
among the scores on each of the datasets of the actual intended size. Only this can ensure that the model is
performing closer to the obtained scores in actuality and the results are consistent.

There are practically no changes in the hyper-parameters except changing the evaluation strategy to ‘steps’.
This is done to ensure there is enough space in the disk when running the algorithm and to avoid crashing the
script in between training and losing the progress. Therefore, though the script now still records the model
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checkpoints after 1000 steps, only the recent 3 and best-performing ones are stored. At the end, the system
will load the best-performing model to run the predictions over the incorrect input sentences. The next step to
improvement is data augmentation.

A drop-out rate of ‘0.1’ is added. This is just to make sure there is no overfitting on the model. The data
augmentation section of the code includes introducing random errors by randomly choosing to either insert,
swap, delete or replace the words in the sentences. This experiment will provide a good reference point for
further needed changes if any. The scores recorded are nearly good, but certain improvements are visible, and
therefore, more improvements, if possible, on the datasets can show promising improvements. At last, after
all the test cases, collective scores can help in better understanding the difference between the runs intuitively.
Following are the test cases and their runs on the chosen datasets for the project. After the span-based correction
scores, the token-based correction scores will be listed for deeper analysis.

5.1.1 Test-case 1

Initially, set to test the model for 3 epochs on the cLang-8 dataset, the model shows promising results and
therefore the next steps on the algorithm were taken in the hopes of increasing the performance from this point
of reference. The score was good and the parameters set for the model for all epochs were: -

1. Learning rate: 5e-5

2. Batch size: 4

3. Weight decay: 0.01

The scores for the run was: -

• Precision: 0.3212

• Recall: 0.2106

• F0.5: 0.2907

The score expected could be the result of the dataset’s simplicity and its speciality to adapt with almost all
kinds of base models to produce the results. Therefore, the next step would be to introduce the algorithm on
the CoNLL-2014 dataset.

Therefore, for the CoNLL-2014 dataset the results recorded are as follows: -

• Precision: 0.4643

• Recall: 0.1159

• F0.5: 0.2899

The score is nearly good but certain improvements are visible and therefore more improvements can be
attempted.

5.1.2 Test-case 2

For increasing the epochs to 6, the following results are obtained. The results for CoNLL-2014 dataset are: -

• Precision: 0.3779

• Recall: 0.0846

• F0.5: 0.2232

The results on cLang-8 for the same epochs are: -

• Precision: 0.2656
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• Recall: 0.2269

• F0.5: 0.2568

Though the scores have dropped than the initial cases, there is a chance of consistency among the scores if
more epochs are tested. This can ensure that the system is at least sustaining itself in terms of performance
across the datasets.

5.1.3 Test-case 3

In the last case of 10 epochs, the maximum epochs possible are attempted to verify the results. Given the
limited time and resources, concluding this experiment can still provide analysis of the model performance on
the datasets and how the changes have affected the model performance across the range of epochs.

The results on the CoNLL-2014 dataset: -

• Precision: 0.3003

• Recall: 0.1255

• F0.5: 0.2349

The scores for cLang-8 dataset are: -

• Precision: 0.1719

• Recall: 0.2087

• F0.5: 0.1782

5.2 Analysis

5.2.1 Metric interpretation

The training loss for all the above-discussed cases has been very close to 0.2-0.4 in all epochs. The slow and
steady decrease indicates promising performance and steady convergence. The improvement in predictions is
evident in [A.3] for the cLang-8 dataset with a training loss of 0.43. The training loss is 0.5 [A.4] in the CoNLL-
2014 dataset which is the best case. The evaluation loss for the datasets cLang-8 and CoNLL-2014 of best-case
model are 0.05 [A.3] and 0.01 [A.4], inferring the decent performance of the model on the unseen data.

The training time considering the sizes of datasets has been low for low epochs for obvious reasons. But
the batch size is unchanged and choosing to keep only the recent 3 best-performing models did not abnormally
increase the training time. Therefore for the maximum epochs, i.e. 10 the training time was 6.5 hours on HPC
or ‘CREATE’. Therefore, this shows that the model was not stuck in the training duration and the convergence
was successful.

The difference in the epochs set for the datasets and algorithm gives clear idea that the model’s performance
was maximum and the parameters were well-implemented to get the desirable scores. Though there seems to be
room for improvement, the algorithm appears to have sufficient components for the intended results. This puts
the model in the base-model hierarchy as a sufficient and reliable base model if not one of the best-performing
ones on the same datasets [3].

Model CoNLL-2014 cLang-8

Test-case 1 0.2899 0.2907

Test-case 2 0.2232 0.2568

Test-case 3 0.2349 0.1782

Table 3: Span-based F0.5 scores of gt5 model

Therefore, the F0.5 scores to be considered given the set of obtained scores is from the minimal epochs (3
epochs) in both datasets. There is minimal difference in later epochs on CoNLL dataset and cLang-8 being
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more straightforward in terms of accurate data of English sentences reduces the performance with an increase in
epochs which can infer towards the model losing its accuracy over the larger training epochs given the size and
complexity of the same dataset. To avoid misinformation on the model’s performance on the datasets, rather
than taking the average, the best epochs are considered as the best performance by the model and how well
it performs on unseen data specifying its generalizing ability. Given the data complexity, model architecture
and hyperparameter settings, the best scores are 0.2907 and 0.2899 for cLang-8 [A.1] and CoNLL-2014 [A.2]
datasets, respectively. The less epochs training suggests that for the given model, the dataset was enough
to be trained and evaluated on less epochs given the parameters are tuned right and data augmentation is
implemented to build the sophistication of the overall system.

Even though the past comparison tables provided [1] and [2] likely encompasses a combination of span and
token-level evaluations, the token-based scores [A.9] [A.10] suggest that the model performs robustly at the
token level and is competitive with these benchmarks [A.5] [A.6]. The full comparison of all test cases is given
in the Table in [4].

Model CoNLL-2014 cLang-8

Test-case 1 0.5524 0.6886

Test-case 2 0.3696 0.4565

Test-case 3 0.5633 0.373

Table 4: Token-based F0.5 scores of gt5 model

5.2.2 Model components impact

The hyper-parameters were beneficial to the system and any changes did not yield better results and the ones
implemented were reliable. The learning rate ‘5e-5’ served as the perfect component as the higher ones are
better for excessively large amounts of datasets, though not so efficient for this particular project. The batch
size was perfect not to consume a large amount of duration for training but rather was sufficient even on the
HPC that was ‘CREATE’. Except for the small bugs which were easily solved after some trial runs, the main
code could run smoothly to evaluate the given dataset.

The data augmentation, however, had variable results. The data augmentation when introduced to the
dataset CoNLL-2014 yielded better performance than before because of improved generalising ability and ex-
pansion of data. The false positives were largely reduced and the score increased quite a lot from base model
that consisted of just the basic parameters. This is a common technique and is still very potent for the given
purpose of the project. Therefore, when applied to cLang-8 dataset it showed promising results. With a greater
strategy, more data from the cLang-8 dataset can be processed efficiently without a decrease in the model’s
performance. However, the technique was applied while ensuring that it is sufficient to improve the model’s
performance and that it provides sufficient results in the limited duration available for the testing of the system.

5.3 Evaluation

5.3.1 Comparative analysis

Errant records the errors corrected by the GEC model, and most of the focus of the particular model is on
correcting the types of errors among the words specifically. The best-case model for both datasets returns a
relatively good and decent F0.5 score for token-based correction. Therefore, the system shows promising signs
of improvement for future works for complex data of sentences but is rather good at performing corrections on
the word level. The scores for cLang-8 and CoNLL-2014 dataset are 0.5524 [A.5] and 0.6886 [A.6]. However, the
main concerning F0.5 scores (span-based correction) that show the overall performance of the system through
sentence-wise correction by the model on the respective datasets was a little less than the benchmark models,
which are 0.2907 and 0.2899 [3]. But overall, it seems fair to judge the generalizing ability of the model given
the dataset size and computational resources to be quite decent.

From the given examples in the Tables in [5] and [6], the system shows improvement towards serving as a
base model. All the experiments were conducted given the time duration available and resources available and
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therefore the GEC could be produced. Even though it is not close to extremely well-performing base models, it
can be considered a decent base model that can be developed further on the given datasets though its existing
version is capable of providing a decent score. The data augmentation section of the code called ‘introduce errors’
function randomly chooses to either insert, add, replace or delete certain words in the input sentences in order
to compel the model to adapt better at recognizing patterns and discerning accurate predictions to the inputs.
But given the predictions made, it is capable of making grammatical corrections and also producing more
meaningful sentences. The errors in sentences are corrected not only grammatically, punctuation-wise and
sentence style-wise but also by retaining the meaning behind the sentence. The corrected sentences are left as
it is. The reason for using ‘Errant’ as metric is also to retain the meaning behind the produced sentences and
simultaneously correcting sentences when outputting scores for the model-built. The system seems to produce
such corrects to a decent degree.

Corrected sentences Input sentences

In addition , a woman testing positive for
BRCA1 would be expected to allow her
brother or sister to disclose such informa-
tion to a niece or nephew rather than her-
self , although this may be further compli-
cated by an individual ’s response to risk
information as they do not want to know .

In addition , a woman testing positive for
BRCA1 would be expected to allow her
brother or sister to disclose such informa-
tion to a niece or nephew rather than do it
herself , although this may be further com-
plicated by an individual ’s response to risk
information as they not want to know .

The PV of my best friend ’s band is now
up at last !

The PV of the song of my best friend ’s
band is up at last !

I think what he meant was that ” love ”
is the feeling that makes the moon look
brighter than the moon you see by your-
self .

I think what he meant was that ” love ”
is the feeling that makes the moon looks
brighter than the moon you see by yourself
.

Table 5: Corrected sentences from cLang-8 dataset

Corrected sentences Input sentences

People that are living in the modern world
really can not live without the social media
sites like Twitter and Facebook .

People that living in the modern world re-
ally can not live without the social media
sites like Twitter and Facebook .

However , I thought that the genetic in-
formation is one person ’s personal privacy
which should be protected by the law .

However , I thought that the genetic in-
formation is one person ’s personal privacy
which should be protected by the law .

To utilize the technology well , we should
do our best to not only balance the pros
and cons , but also lengthen the pros and
shorten the cons .

To utilize the technology well , we should do
our effort to not only balance the pros and
cons but also lengthen the pros and shorten
the cons .

Table 6: Corrected sentences from CoNLL-2014 dataset

5.3.2 Future improvements

Further improvements in the system can be expected in terms of the size of the dataset. The dataset processed
is enough for the system to be processed on the provided HPC. Though, with more resources and time if
provided, further experiments can be conducted to understand whether the given system has potential to
increase its performance and if so then at exactly which kind of errors. Though the experiments conducted
were performed given the limited time and resources, it has given a proper idea for the kind of approach that
must be taken for the objective considered for the project. It was sufficient to spot the kind of errors that the
system was capable of examining and correcting. Though more amount of techniques can be potentially applied
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to ensure that more kinds of errors are corrected and this can be better contribution to the overall project.
If this approach is combined with training the system on larger sections of the dataset with more resources
available then the performance can be improved given more experiments are possible to analyse the steady
progress of such a project.

Some research directions must be given to the project, which can include techniques not applied in the
project to potentially increase its performance while sustaining its progress.

• For improved error-correction outcomes, the technique to train the model on n-gram language models
(considering sequences of n words) that capture the surrounding context can be considered because this
helps identify grammatically correct options based on how words typically co-occur.

• Analyse the grammatical relationships between words in the surrounding text. This allows the model to
understand how different parts of speech interact and choose corrections that maintain these relationships.

• Identifying and categorizing the named entities such as people, places, organizations, etc in the text
can be a huge help to the overall system. This can help ensure subject-verb agreement and pronoun
resolution based on the entity type which can help in discerning more contextual information surrounding
the language being processed.

Some of the discussed techniques add to the complexity of the models, further increasing the time duration for
training, but they show promising improvements and are among the most researched techniques that share the
project’s objective.
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6 Conclusion

This study aimed to evaluate the performance of a GEC model called gt5 on the English datasets cLang-8
and CoNLL-2014. Through rigorous experimentation and analysis, a demonstration was possible on how well
the model can perform on training datasets and correcting the input errors such as grammar, punctuation,
and style and produce accurate grammatically corrected outputs which are compared to reference or correct
sentences from the relevant datasets. Though the aim was to produce the base model capable of scoring F0.5 of
0.3-0.5, the model falls short to just near 0.3. However, the model has potential as it is quite adept at correcting
errors on word level (token-based correction). Span-based or sentence-level corrections require understanding
the broader context and making coherent changes across multiple tokens, which is more challenging than token-
level corrections.

These limitations in results for complex sentences could be due to the limited dataset for implementation
and time and computational resources. The training time was made efficient by using cloud platform and
experiments for the initial aims of achieving some results on the basic datasets were made possible. The model
aimed at producing the algorithm that can provide some clarity on the requirements for producing GEC on
which further work can be done. Therefore, the application of hyper-parameter tuning and data augmentation
was imperative for the chosen datasets. More improvements in the model can be expected on larger datasets
and larger available resources for upgrading the GEC system.

The findings indicate that the model is not the best but significant at correcting entire spans of text with
F0.5 scores of 0.2907 and 0.2899 for datasets cLang-8 and CoNLL-2014 respectively. This indicates its overall
correction performance among whole sentences. However, the model was able to perform comparatively well on
token-based correction or specifically performing the corrections at word-level with F0.5 scores of 0.552 [A.5] and
0.688 [A.6] for datasets cLang-8 and CoNLL-2014. This indicates strong performance in detecting and correcting
individual erroneous tokens with good precision. These scores can put the model is the competitive hierarchy to
past performances and surpass some state-of-the-art GECs. This kind of achievement on the cLang-8 dataset
has been good starting point, for it being one of the newest datasets to be experimented on in the research field.
These results contribute to the ongoing research in GEC by implementing the data augmentation techniques
and specifically the one applied in the project is a ‘noisy channel simulation’ for the data augmentation which
essentially implements real-world errors in the sentences to create synthetically erroneous data that can help the
GEC model learn to identify and correct different error patterns and testing the generalising ability of the overall
model. The amount of epochs expected to breed the best results is directly proportional to the complexity and
size of the dataset and not necessarily will large epochs produce best results. The hyper-parameters including
the applied learning rate in complementary with the chosen drop-out rate produce the most effective model
which converges better than others. Therefore, the best cases were recorded to finalise the best-performing
models and the subsequent checkpoints for the model.

While the model exhibited promising results, several challenges were encountered, including reducing the
training time when training the model, improving the generalising ability of the model through the techniques
applied like data augmentation, implementing the GEC pipeline to extract predictions from the model trained
and obtaining F0.5 score on final results through Errant score. Addressing these limitations potentially enhanced
the model’s overall performance to a decent degree. Future research could explore testing on much larger datasets
and computational resources, implementing more advanced techniques to improve model generalisation on larger
amounts of unseen data and trying out newer base models to have more boost on the overall project development.
While the span-based correction is relatively lower, it still demonstrates the system’s ability to identify and
correct a significant portion of grammatical errors. The future work, as discussed in Section [5.3.2], can be
focused on improving the span-based performance of the respective model.

Overall, this study provides valuable insights into the capabilities and limitations of GEC models. By build-
ing upon these findings, the field can develop more accurate and effective GEC systems for various applications.
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7 Legal, social, ethical and professional issues

The code of conduct during the development phases of this project has been per the BCS (British Computing
Society) code of conduct. This highlights the ethics that must be followed in the practices associated with IT
or computing science. The rule is most relevant and sincerely followed: ‘1. Public Interest: You shall:...b. have
due regard for the legitimate rights of Third Parties;’ [17].
The rule is for safeguarding and protecting intellectual property and has been carefully followed in the phases of
development. The rule ensures that all the supports are carefully acknowledged and ethics have been followed
in all the phases of the project’s progress. All the tools and libraries used for the development of the project
are open source and specifically for the purpose. All the references are sincerely referenced and the ideas are
procured to build the project’s strong foundation on the openly available methodologies. The use of third-party
code, ideas and information is accepted within the field of computer science in the interests of progress and to
build on the work already compiled by previous individuals. These are also duly specified in the research section
and all the respectable authors are credited for the research materials they made available. It is imperative to
give due credit to the respective third parties and ensure there is no infringement on their intellectual property
rights. In this regard, a significant amount of care has been taken to source and reference each idea, code, and
information prepared by third parties so that I do not claim ownership of the work performed by others. I
declare that no part of this submission has been generated by AI software. These are my own words.

42



8 References

[1] “BERT. huggingface.co. url: https://huggingface.co/docs/transformers/en/model_doc/bert.

[2] “Deploying. a Seq2Seq Model with TorchScript — PyTorch Tutorials 2.3.0+cu121 documentation, ” py-
torch.org. url: https://pytorch.org/tutorials/beginner/deploy_seq2seq_hybrid_frontend_
tutorial.html.

[3] “Documentation. www.overleaf.com. url: https://www.overleaf.com/learn.

[4] “Exploring. Transfer Learning with T5: the Text-To-Text Transfer Transformer, ” research.google. url:
https://research.google/blog/exploring-transfer-learning-with-t5-the-text-to-text-

transfer-transformer/.

[5] “google-research-datasets/clang8. GitHub, Jun. 07, 2024. url: https://github.com/google-research-
datasets/clang8.

[6] “google-research-datasets/clang8. GitHub, Jun. 07, 2024. url: https://github.com/google-research-
datasets/clang8#.

[7] “google-t5/t5-base. · Hugging Face, ” huggingface.co. Mar. 5, 2024. url: https://huggingface.co/
google-t5/t5-base.

[8] “Improving. Grammatical Error Correction via Contextual Data Augmentation, ” arxiv.org. url: https:
//arxiv.org/html/2406.17456v1.

[9] “Machine. Learning Mastery. ” Machine Learning Mastery. 2016. url: https://machinelearningmastery.
com/.

[10] “NAIST. Lang-8 Learner Corpora, ” sites.google.com. url: https://sites.google.com/site/naistlang8corpora.

[11] “Papers and Code. T5 Explained, ” paperswithcode.com. url: https://paperswithcode.com/method/t5.

[12] “Shared. Task: Grammatical Error Correction, ” Nus.edu.sg. 2014. url: https://www.comp.nus.edu.
sg/~nlp/conll14st.html.

[13] “T5. A Lazy Data Science Guide, ” mohitmayank.com. url: http://mohitmayank.com/a_lazy_data_
science_guide/natural_language_processing/T5/.

[14] “The. Basics of Language Modeling with Transformers: BERT — Emerging Technologies, ” etc.cuit.columbia.edu.
url: https://etc.cuit.columbia.edu/news/basics-language-modeling-transformers-bert.

[15] K. Aitken. Understanding How Encoder-Decoder Architectures Attend. Accessed: Jul. 02. 2024. url:
https://arxiv.org/pdf/2110.15253.

[16] A. Anand et al. “GEC-DCL: Grammatical Error Correction Model with Dynamic Context Learning for
Paragraphs and Scholarly Papers”. In: Lecture notes in computer science (Jan. 2023), pp. 95–110. doi:
10.1007/978-3-031-49601-1_7.

[17] BCS. “BCS, THE CHARTERED INSTITUTE FOR IT CODE OF CONDUCT FOR BCS MEMBERS”.
June 2022. url: https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf.

[18] C. Bryant. chrisjbryant/errant. GitHub, Mar. 02. 2024. url: https://github.com/chrisjbryant/
errant.

[19] C. Bryant et al. “Grammatical Error Correction: A Survey of the State of the Art”. In: Computational
Linguistics (June 2023), pp. 1–59. doi: 10.1162/coli_a_00478.

[20] W. Chan et al. KERMIT: Generative Insertion-Based Modeling for Sequences. arXiv.org, Jun. 04. 2019.
url: https://arxiv.org/abs/1906.01604.

[21] S. Chollampatt and H. T. Ng. Neural Quality Estimation of Grammatical Error Correction. ACLWeb,
Oct. 01. 2018. url: https://aclanthology.org/D18-1274/.

[22] S. Chollampatt, K. Taghipour, and H. T. Ng. Neural Network Translation Models for Grammatical Error
Correction. arXiv.org, Jun. 01. 2016. url: https://arxiv.org/abs/1606.00189.

43

https://huggingface.co/docs/transformers/en/model_doc/bert
https://pytorch.org/tutorials/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html
https://pytorch.org/tutorials/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html
https://www.overleaf.com/learn
https://research.google/blog/exploring-transfer-learning-with-t5-the-text-to-text-transfer-transformer/
https://research.google/blog/exploring-transfer-learning-with-t5-the-text-to-text-transfer-transformer/
https://github.com/google-research-datasets/clang8
https://github.com/google-research-datasets/clang8
https://github.com/google-research-datasets/clang8#
https://github.com/google-research-datasets/clang8#
https://huggingface.co/google-t5/t5-base
https://huggingface.co/google-t5/t5-base
https://arxiv.org/html/2406.17456v1
https://arxiv.org/html/2406.17456v1
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://sites.google.com/site/naistlang8corpora
https://paperswithcode.com/method/t5
https://www.comp.nus.edu.sg/~nlp/conll14st.html
https://www.comp.nus.edu.sg/~nlp/conll14st.html
http://mohitmayank.com/a_lazy_data_science_guide/natural_language_processing/T5/
http://mohitmayank.com/a_lazy_data_science_guide/natural_language_processing/T5/
https://etc.cuit.columbia.edu/news/basics-language-modeling-transformers-bert
https://arxiv.org/pdf/2110.15253
https://doi.org/10.1007/978-3-031-49601-1_7
https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf
https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant
https://doi.org/10.1162/coli_a_00478
https://arxiv.org/abs/1906.01604
https://aclanthology.org/D18-1274/
https://arxiv.org/abs/1606.00189
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A Appendix

A.1 Appendix A

The score file for best performing test-case of cLang-8 dataset.

A.2 Appendix B

The score file for best performing test-case of CoNLL-2014 dataset.

A.3 Appendix C

The training result of model when training on cLang-8 dataset.
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A.4 Appendix D

The training result of model when training on CoNLL-2014 dataset.

A.5 Appendix E

The token-based correction file for best performing test-case of cLang-8 dataset.
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A.6 Appendix F

The token-based correction file for best performing test-case of CoNLL-2014 dataset.
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A.7 Appendix G

The Test-case 2 (6 epochs) for both the datasets.

For cLang-8

For CoNLL-2014
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A.8 Appendix H

The Test-case 3 (10 epochs) for both the datasets.

For cLang-8

For CoNLL-2014
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A.9 Appendix I

Token-based correction F0.5 scores for Test-case 2 (6 epochs)

For CoNLL-2014
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For cLang-8
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A.10 Appendix J

Token-based correction F0.5 scores for Test-case 3 (10 epochs)

For CoNLL-2014
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For cLang-8
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A.11 Appendix K

Source code and main folder: Contains the main folder which has all the files required to run
the model.

To run the source code, following are the components of the ‘gt5 files’ folder that contains all the code, datasets
and bestcase results.

• py files: Contains all the python scripts to run the model.

1. main.py: Runs the GEC model from the file ‘Gecmodel.py’.

2. Gecmodel.py: Contains the complete source code of GEC model.

3. Gecmodel errEval.py: Contains the script for obtaining F0.5 scores on the results obtained by ‘Gec-
model.py’.

4. ReadMe.md: Instructions to guide running and evaluating the python model.

• datasets: Contains the datasets of the project, CoNLL-2014 and cLang-8 respectively.

• bestCase results: Contains the complete folders of bestcase results of both the datasets.

1. CoNLL-2014

(a) result.out: Contains the recorded epochs and evaluation loss and training loss.

(b) Err files evals

– CoNLL.incorrect: Incorrect sentences input to the model.

– Err score.txt: Final F0.5 scores, precision and recall.

– predictions.csv: Predictions made by the model in csv format.

– preditions.txt: Predicitions converted to text-format required for ‘m2’ format conversion.

– ref m2.txt: m2 format of references files.

– references.txt: Correct form of sentences that were input to the model.

– results.txt: m2 format of recorded results by the model for comparing with ref m2 file to
obtain scores.

2. cLang 8

(a) result.out: Contains the recorded epochs and evaluation loss and training loss.

(b) Err files evals

– clang8.incorrect: Incorrect sentences input to the model.

– Err score.txt: Final F0.5 scores, precision and recall.

– predictions.csv: Predictions made by the model in csv format.

– preditions.txt: Predicitions converted to text-format required for ‘m2’ format conversion.

– ref m2.txt: m2 format of references files.

– references.txt: Correct form of sentences that were input to the model.

– results.txt: m2 format of recorded results by the model for comparing with ref m2 file to
obtain scores.
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Main file to run the GEC model (‘main.py’)

1 # Shivang Chaudhary

2 # Course: MSc Artificial Intelligence

3 # Year: 2023 -24

4 # This is the main file to run the main GEC model.

5 # Once results are recorded after running the file , ’Gecmodel_errEval.py’ must be run to

evaluate the recorded predictions and obtain final F0.5 scores.

6

7 import subprocess

8 import Gecmodel

9

10

11 def run_file(script):

12 # Running the file using ’subprocess ’.

13 try:

14 result = subprocess.run([’python ’, script], check=True , capture_output=True , text=

True)

15 print(f"Output of {script }:\n{result.stdout}")

16 except subprocess.CalledProcessError as e:

17 print(f"Error while running {script }:\n{e.stderr}")

18

19

20 # Press the green button in the gutter to run the script.

21 if __name__ == ’__main__ ’:

22 # Imported the GEC - script and putting in as parameter to run it.

23 script = Gecmodel

24 run_file(script)
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A.12 Appendix L

Main file or the GEC model (’Gecmodel.py’)

1 # -----------

2 # Author: Shivang Chaudhary

3 # Course: MSc Artificial Intelligence

4 # Year: 2023 -24

5 # Following is the GEC ’gt5’ that is experimented on limited versions of cLang -8 and CoNLL

-2014 dataset

6 # -----------

7

8 import os

9 import random

10

11 import pandas as pd

12 from datasets import load_dataset , Dataset

13 from transformers import AutoTokenizer , T5ForConditionalGeneration , Trainer ,

TrainingArguments , \

14 TextClassificationPipeline , AutoModelForSequenceClassification , DataCollatorWithPadding ,

AutoModelForSeq2SeqLM , \

15 pipeline , AdamW , T5Config

16 import evaluate

17

18 # LOADING THE DATASET FOR THE MODEL

19 # Load CLang -8 dataset : The dataset labelling -> Column1= all incorrect sentences , Column2=

all correct sentences

20 df = pd.read_csv(’Data/clang8.csv’)

21

22 # Create Hugging Face Dataset

23 # dataset = Dataset.from_pandas(df)

24

25 # LOAD TOKENIZER

26 tokenizer = AutoTokenizer.from_pretrained(’t5 -base’)

27

28 # ----Introducing dropout:-

29 config = T5Config.from_pretrained(’t5-base’, dropout_rate =0.1)

30 # ----

31

32 # Load pretrained model :-

33 model = T5ForConditionalGeneration.from_pretrained(’t5 -base’,

34 config=config

35 # num_labels=len(unique_labels),

36 # label2id=label2id ,

37 # id2label=id2label ,

38 )

39

40

41 # ------- Applying data -augmentation

42 # Function introduces random errors.

43 def introduce_errors(sentence):

44 words = sentence.split()

45 if len(words) < 2:

46 # Skips very short sentences

47 return sentence

48

49 error_type = random.choice ([’swap’, ’insert ’, ’delete ’, ’replace ’])

50

51 if error_type == ’swap’ and len(words) > 1:

52 # Introduces a swap error between random adjacent words

53 index = random.randint(0, len(words) - 2)

54 words[index], words[index + 1] = words[index + 1], words[index]

55 elif error_type == ’insert ’:

56 # Inserting a random word at a random position

57 random_word = random.choice(words)
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58 index = random.randint(0, len(words))

59 words.insert(index , random_word)

60 elif error_type == ’delete ’ and len(words) > 1:

61 # Deleting a random word

62 index = random.randint(0, len(words) - 1)

63 words.pop(index)

64 elif error_type == ’replace ’:

65 # Replacing a random word with another random word

66 index = random.randint(0, len(words) - 1)

67 random_word = random.choice(words)

68 words[index] = random_word

69

70 return ’ ’.join(words)

71

72

73 # Creating a new column with augmented data

74 df[’augmented ’] = df[’Column1 ’].apply(introduce_errors)

75

76 # Combine the original and augmented data

77 augmented_df = pd.DataFrame ({

78 ’Column1 ’: pd.concat ([df[’Column1 ’], df[’augmented ’]]),

79 ’Column2 ’: pd.concat ([df[’Column2 ’], df[’Column2 ’]])

80 })

81

82 # Updated dataset for further experimentation:-

83 dataset = Dataset.from_pandas(augmented_df)

84

85 # ------------------------------------

86

87

88 # Splitting the dataset

89 train_test_split = dataset.train_test_split(test_size =0.3)

90 train_dataset = train_test_split[’train’]

91 eval_dataset = train_test_split[’test’]

92

93

94 # ------

95

96

97 # PRE -PROCESSING FUNCTION:-

98 def preprocess_function(examples):

99 inputs = examples[’Column1 ’]

100 targets = examples[’Column2 ’]

101

102 model_inputs = tokenizer(inputs , padding=’max_length ’, truncation=’longest_first ’,

return_tensors=’pt’

103 , max_length =512)

104

105 # with tokenizer.as_target_tokenizer ():

106 labels = tokenizer(targets , padding=’max_length ’, truncation=’longest_first ’,

return_tensors=’pt’

107 , max_length =512)

108

109 model_inputs[’labels ’] = labels[’input_ids ’]

110 # Used for testing purposes ---

111 # print(model_inputs)

112 # print(labels)

113 # ---

114 return model_inputs

115

116

117 # -------Retaining the dataset for backup (if required in later processing phase.)

118 original_eval_dataset = eval_dataset

119 # --------
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120

121 # -- MAKING THE TRAIN AND VALIDATION SET

122 train_dataset = train_dataset.map(preprocess_function , batched=True)

123 eval_dataset = eval_dataset.map(preprocess_function , batched=True)

124 # print(eval_dataset) -> For testing phase.

125 # ----

126

127

128 # Setting up evaluation - THIS IS BACKUP -METRIC , NOT THE FOCUS OF THE PROJECT.

129 metric = evaluate.load(’accuracy ’)

130

131 # Defining training arguments

132 training_args = TrainingArguments(

133 output_dir=’./ results_clang_10epc ’, # Store the results for epochs 3,6 and 10

respectively.

134 evaluation_strategy=’steps’,

135 learning_rate =5e-5,

136 per_device_train_batch_size =4,

137 per_device_eval_batch_size =4,

138 num_train_epochs =10, # Can experiment with epochs , diverse results expected with 3,6 and

10.

139 weight_decay =0.01,

140 save_steps =1000 , # Saving checkpoint every 1000 steps

141 save_total_limit =3, # Limit the total amount of checkpoints. Deletes the older

checkpoints.

142 logging_dir=’./ logs_clang8_tuned ’, # Directory for storing logs , can be renamed for

different epochs to store data.

143 logging_steps =1000 , # Log every 1000 steps

144 load_best_model_at_end=True , # Load the best model when finished training

145 )

146 # --> metric_for_best_model =" accuracy" -> NOT THE PROJECT ’S FOCUS.

147

148

149 # Define custom data collator

150 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

151 # -----

152

153 # ------- Adding AdamW optimizer

154 optimizer = AdamW(model.parameters (), lr=training_args.learning_rate)

155 # ------------------------------

156

157 # Initialize Trainer

158 trainer = Trainer(

159 model=model ,

160 args=training_args ,

161 train_dataset=train_dataset ,

162 eval_dataset=eval_dataset ,

163 tokenizer=tokenizer ,

164 data_collator=data_collator ,

165 optimizers =(optimizer , None),

166 # compute_metrics=compute_metrics ( IF REQUIRED )

167 )

168

169 # Training the model

170 trainer.train()

171

172 # ------- BUILDING THE GEC PIPE -LINE

173 gec_pipeline = pipeline(task=’text2text -generation ’, model=model , tokenizer=tokenizer)

174 # Save predictions and references

175 predictions = gec_pipeline ([ example[’Column1 ’] for example in eval_dataset], max_length =512,

num_return_sequences =1)

176 pred_texts = [prediction[’generated_text ’] for prediction in predictions]

177 references = [example[’Column2 ’] for example in eval_dataset]

178 # ------
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179

180

181 # ---------------------------------------------------------------------------------

182

183 # Err_files_evals for storing the corrected sentences and scores respectively.

184 # Saving to verify:-

185 dir_path = ’Err_files_evals ’

186 # Verify if the directory is present or not:-

187 if not os.path.exists(dir_path):

188 os.makedirs(dir_path)

189 print("Directory", dir_path , "created.")

190 else:

191 print("Directory", dir_path , "already exists.")

192

193 # ---

194 df = pd.DataFrame(predictions)

195 df.to_csv("Err_files_evals/predictions.csv", index=False) # Save to CSV

196 # ---

197

198

199 # Save predictions and references -----

200 with open(’Err_files_evals/predictions.txt’, ’w’) as pred_file , \

201 open(’Err_files_evals/references.txt’, ’w’) as ref_file:

202 for pred , ref in zip(pred_texts , eval_dataset[’Column2 ’]):

203 pred_file.write(pred.strip() + ’\n’)

204 ref_file.write(ref.strip () + ’\n’)

205 # -----

206

207 # ---- Evaluation phase: Obtaining the needed files:-

208 # Getting the original inputs:-

209 # Prepare input files for ERRANT

210 with open(’Err_files_evals/clang8.incorrect ’, ’w’) as orig_file:

211 for incorrect in eval_dataset[’Column1 ’]:

212 orig_file.write(incorrect.strip() + ’\n’)

213

214 # ------

215

216 # Ensure the lengths of dataset[’Column1 ’] and pred_texts are the same:-

217 assert len(eval_dataset[’Column1 ’]) == len(pred_texts), "Mismatch in number of original texts

and predictions"

218 # ------

219

220 # -- FINAL TESTING THROUGH ERRANT ON NEIGHBOURING SCRIPT , ’Gecmodel_errEval.py ’.
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A.13 Appendix M

Evaluation file: To run after predictions have been captured from main model to calculate final
scores (’Gecmodel errEval.py’)

1 # Author: Shivang Chaudhary

2 # Course: MSc Artificial Intelligence

3 # Year: 2023 -24

4 # The following is the file to produce scores of the recorded sentences files.

5 # IT REQUIRES THE M2 FORMAT OF THE PREDICTED AND REFERENCE TEXT FILES TO PRODUCE THE FINAL

SCORES.

6

7 import subprocess

8

9

10 def create_blank_file(filepath):

11 """ Creates a blank file at the given path if it doesn’t exist.

12 Args:

13 filepath: The path to the file.

14 """

15 with open(filepath , "w") as file:

16 pass

17

18

19 # Verifying the file paths ---

20 filepath1 = "Err_files_evals/results.txt"

21 create_blank_file(filepath1)

22

23 filepath2 = "Err_files_evals/ref_m2.txt"

24 create_blank_file(filepath2)

25 # ------

26

27

28 # Running the ERRANT commands

29 subprocess.run(

30 ["errant_parallel", "-orig", "Err_files_evals/clang8.incorrect", "-cor", "Err_files_evals

/predictions.txt", "-out",

31 "Err_files_evals/results.txt"],

32 capture_output=True , # Capture stdout and stderr

33 text=True # Return the output as a string

34 )

35 # subprocess.run([" errant_m2", "-silver", "Err_files_evals/references.txt", "-out", "

Err_files_evals/ref_m2.txt"], capture_output=True , text=True)

36 subprocess.run(

37 ["errant_parallel", "-orig", "Err_files_evals/references.txt", "-cor", "Err_files_evals/

predictions.txt", "-out",

38 "Err_files_evals/ref_m2.txt"],

39 capture_output=True , # Capture stdout and stderr

40 text=True # Return the output as a string

41 )

42 output = subprocess.run(["errant_compare", "-hyp", "Err_files_evals/results.txt", "-ref", "

Err_files_evals/ref_m2.txt"],

43 capture_output=True , # Capture stdout and stderr

44 text=True # Return the output as a string

45 )

46

47 # -------- Saving the final score

48 output_file_path = ’Err_files_evals/Err_score.txt’

49 # Writing the output to file ,

50 with open(output_file_path , "w") as file:

51 file.write("Standard Output :\n")

52 file.write(output.stdout)

53 file.write("\n\nStandard Error :\n")

54 file.write(output.stderr)

55 # ---------
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